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Abstract
This paper is devoted to the group classification of steady viscous gas dynamics
equations in the two-dimensional case (with plane or cylindrical symmetry)
with arbitrary state equations. Representations of all invariant solutions are
given.
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1. Introduction

The analytic study of the properties of partial differential equations plays an important role
in applied mathematics and mathematical physics. One of the methods for studying the
properties of differential equations is group analysis. The modern state of group analysis
is reviewed in [1]. Group analysis besides constructing exact solutions provides a regular
procedure for mathematical modelling by classifying differential equations with respect to
arbitrary elements. The application of group analysis implies some steps. The first step is a
group classification with respect to arbitrary elements. An admitted group is found at this step.
The next step is a construction of an optimal system of subalgebras. Then one can attempt to
find an invariant or partially invariant solution for each subalgebra of the optimal system.

We should note here that many invariant solutions of the viscous gas dynamics equations
have also been obtained by other methods [2–10]. The group classification of the viscous gas
dynamics1 equations was done in [11]. The group classification of two-dimensional steady
viscous gas dynamics equations for an ideal gas was done in [12]. For some models of viscous
gas dynamics equations, group analysis was used in [13]. Unsteady spherically symmetric
viscous gas dynamics equations were studied in [14].

1 Here the first, λ = λ(T ), and second, µ = µ(T ), coefficients of viscosity are related by the equation λ = −2µ/3,
and κ = κ(T ).
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This paper is devoted to the application of group analysis for studying the viscous gas
dynamics equations with arbitrary state equations.

2. The group analysis algorithm

Let us first review the notations and techniques used in group analysis.
Let an lth-order system of differential equations

(S): Fk(x, u, p) = 0 (k = 1, 2, . . . , s)

be given. Here x = (xi), (i = 1, 2, . . . , n), are the independent variables, u = (uj )

(j = 1, 2, . . . ,m) are the dependent variables, p = (
pkα
)

are the derivatives up to lth-order
and α = (α1, α2, . . . , αn) is a multi-index with |α| ≡ α1 + α2 + · · · + αn � l.

2.1. Admitted Lie group of transformations

One of the main objects in group analysis is the local one-parameter Lie group G1 of the
transformations:

x ′
i = f xi (x, u; a) uj ′ = f uj (x, u; a) (i = 1, 2, . . . , n; j = 1, 2, . . . ,m). (1)

There is a one-to-one correspondence between groups G1 and infinitesimal generators

X = ξ i(x, u)∂xi + ζ j (x, u)∂uj

where

ξ i(x, u) =
(

df xi

da

)
|a=0

ζ j (x, u) =
(

df uj

da

)
|a=0

.

The operator

X
l
= X +

∑
j,α

ζ jα ∂pjα

with coefficients

ζ
j

α,k = Dkζ
j
α −

∑
i

p
j

α,iDkξ
i . (2)

is called the lth prolongation of a generator X. Here

Dk = ∂

∂xk
+
∑
j,α

p
j

α,k

∂

∂p
j
α

are the operators of total differentiation with respect to xk (k = 1, 2, . . . , n).
The algorithm for finding a local one-parameter Lie group (1) admitted by the system of

differential equations (S) consists of the following four steps.
In the first step, the form of the generator

X = ξ i(x, u)∂xi + ζ j (x, u)∂uj

is given, with unknown coefficients ξ i(x, u), ζ j (x, u). In the second step the prolonged
operator X

l
is applied to every equation of the system (S). In the next step the coefficients of

the prolonged operator are substituted by using formulae (2). The equations obtained must be
considered on the manifold (S). As a result one obtains the system of differential equations

DS: X
l
F k(x, u, p)|(S) = 0 (k = 1, 2, . . . , s). (3)
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This system of equations is called the system of determining equations and is an
overdetermined system of linear homogeneous differential equations in the unknown
coordinates ξ i(x, u), ζ j (x, u). The general solution of the determining equations DS

generates a full group GS of the system (S). The feature of the admitted group is that
under the action of any transformation of this group, every solution u = U(x) of the system
(S) is transformed into a solution u = Ua(x) of the same system (S). Therefore, the admitted
group allows construction of new solutions from known solutions. Note that the set of admitted
generators generate a Lie algebra, which is called admitted by the system (S).

2.2. Equivalence transformations

Most systems of partially differential equations have arbitrary elements: arbitrary functions
or arbitrary constants. These arbitrary elements can be separated into classes with respect to
a group of equivalence transformations. An equivalence transformation is a nondegenerate
change of dependent and independent variables and arbitrary elements, which transforms any
system of differential equations of a given class to a system of equations of the same class.
These transformations allow us to use the simplest representation of the given equations.
Note that the admitted group depends on specialization of the arbitrary elements. The group
classification problem consists in searching for an admitted group of transformations, which
is admitted for all arbitrary elements of the system and all specializations of the arbitrary
elements. The specialization of the arbitrary elements can extend the admitted group. For
the calculation of equivalence transformations, we follow the approach developed in [15, 16],
which consists of the following.

Suppose, the system of differential equation

Fk(x, u, p, φ) = 0 (k = 1, 2, . . . , s) (4)

has arbitrary elements φ = (φ1, φ2, . . . , φt ), which are functions (or constants) φ = φ(x, u).
A specific value of the arbitrary elements represents a concrete system of differential equations.

The problem of finding an equivalent transformation consists of constructing a
transformation of the space Rn+m+t (x, u, φ) which preserves the equations by only changing
their representative φ = φ(x, u). For this purpose, we consider the one-parameter group of
transformations of the space Rn+m+t :

x ′ = f x(x, u, φ; a) u′ = f u(x, u, φ; a) φ′ = f φ(x, u, φ; a). (5)

A generator of this group has the form

Xe = ξx∂x + ζ u∂u + ζ φ∂φ (6)

with the coordinates2:

ξ i = ξ i(x, u, φ) ζ u
j = ζ u

j

(x, u, φ) ζ φ
k = ζ φ

k

(x, u, φ)

(i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , t).

We use the main feature of the Lie group that any solution u0(x) of system (4) with
functions φ(x, u) is transformed by (5) into another solution u = ua(x

′) of system (4),
but with different (transformed) functions φa(x, u), which are defined in the following way.
Solving the relations

x ′ = f x(x, u, φ(x, u); a) u′ = f u(x, u, φ(x, u); a)
2 Later the author discovered that similar assumptions about the coefficients of the operator were used in [17] for
one class of ordinary differential equations with one nonessential restriction ζ φ

k = ζ φ
k
(x, φ).
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with respect to (x, u), we obtain

x = gx(x ′, u′; a) u = gu(x ′, u′; a). (7)

Then the transformed function is

φa(x
′, u′) = f φ(x, u, φ(x, u); a) (8)

where instead of (x, u) we have to substitute their expressions (7). The transformed solution
ua(x) is obtained by solving the relations

x ′ = f x(x, u0(x), φ(x, u0(x)); a)
with respect to (x):

x = ψx(x ′; a)
and substituting into

ua(x
′) = f u(x, u0(x), φ(x, u0(x)); a). (9)

The formulae for the transformations of the partial derivatives pa and the derivatives of the
functions φ are obtained by differentiating (8) and (9) with respect to x ′ and u′.

The method for finding a group of equivalence transformations is similar to the algorithm
for finding an admitted group of transformations. The difference only consists of the
prolongation of the infinitesimal generator Xe. In agreement with the construction of the
functions ua(x ′) and φa(x ′, u′), the prolonged operator

X̄e = Xe + ζ ux ∂ux + ζ φx ∂φx + ζ φu∂φu + · · ·
has the following coordinates

ζ uλ = De
λζ

u − uxD
e
λξ

x (λ = x1, x2, . . . , xn)

with De
λ = ∂λ + uλ∂u + (φuuλ + φλ)∂φ and

ζ φλ = D̃e
λζ

φ − φxD̃
e
λξ

x − φuD̃
e
λζ

u (λ = u1, u2, . . . , um, x1, x2, . . . , xn)

with D̃e
λ = ∂λ + φλ∂φ .

An equivalence group GSe of transformations is generated by G1(Xe).

Remark 1. In some cases one may have additional requirements for the arbitrary elements.
For example, the arbitrary elements φµ may be supposed to be independent of the independent
variables ∂φµ

∂xk
= 0. When studying the equivalence group, such conditions have to be added to

the original system of differential equations (4), leading to additional determining equations.

Remark 2. Note that in the case of the Navier–Stokes equations, kinematic viscosity is the
arbitrary element and these equations can be transformed to equations (14) by scaling the
independent and dependent variables.

2.3. Invariant and partially invariant solutions

For each subgroup of the admitted group GS, one can try to find an invariant or partially
invariant solution. Let H ⊂ GS be a group admitted by the system of equations (S). Assume
thatX1, . . . , Xr is a basis of the Lie algebraLr which corresponds to the group H. An invariant
or partially invariant solution with respect to the group H is called an H-solution. The method
[18] for constructing H-solutions with respect to the group H requires us to find a universal
invariant of this group: a set of all functionally independent invariants. For this purpose one
needs to solve the overdetermined linear system of differential equations:

Xiφ (x, u) = 0 (i = 1, 2, . . . , r). (10)
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Because X1, . . . , Xr generate a Lie algebra, system (10) is complete. Its general solution can
be expressed through the m + n− r∗ invariants

J = (J 1(x, u), J 2(x, u), . . . , J m+n−r∗(x, u))

where r∗ is the total rank of the matrix composed of the coefficients of the generators
Xi (i = 1, 2, . . . , r). If the rank of the Jacobi matrix ∂(J 1,...,Jm+n−r∗ )

∂(u1,...,um)
is equal to q, then

without loss of generality, one can choose the first q � m invariants J 1, . . . , J q such that
the rank of the Jacobi matrix ∂(J 1,...,J q )

∂(u1,...,um)
is equal to q and the remaining k = m + n − r∗ − q

invariants J q+1, J q+2, . . . , J m+n−r∗ only depend on the independent variables x. H -solutions
are characterized by two integers: the rank σ = δ + n− r∗ � 0 and the defect δ � 0; thus one
uses the notation H(σ, δ)-solution. The rank and defect must satisfy the inequalities

k � σ < n max{r∗ − n,m − q, 0} � δ � min{r∗ − 1,m− 1}.
To construct a representation of H(σ, δ)-solutions, one needs to separate the universal

invariant into two parts: J = (J̄ , ¯̄J ), where l = m− δ and

J̄ = (J 1, . . . , J l) ¯̄J = (J l+1, J l+2, . . . , J m+n−r∗).

This means that one can choose the number l such that 1 � l � q � m . The rank and defect
of the H(σ, δ)-solution are δ = m− l, σ = m + n− r∗ − l = δ + n− r∗. A solution is called
invariant if δ = 0, otherwise it is called a partially invariant solution. From the first l invariants
J 1, J 2, . . . , J l one can define the l dependent functions

ui = φi(J̄ , ul+1, ul+2, . . . , um, x) (i = 1, . . . , l). (11)

The functions ul+1, ul+2, . . . , um are called superfluous. The representation of the H(σ, δ)-
solution is obtained by assuming that the first part of the universal invariant is a function of
the second part:

J̄ = .( ¯̄J) (12)

and substituting (12) into (11). Thus, the representation of an invariant or partially invariant
solution is

ui = /i( ¯̄J , ul+1, ul+2, . . . , um, x) (i = 1, . . . , l) (13)

where /i = φi(.( ¯̄J), ul+1, ul+2, . . . , um, x).
If δ �= 0, then either σ = k or σ > k. In the first case (σ = k) the partially invariant

solution is called regular, otherwise it is called irregular [19]. The number σ − k is called the
measure of irregularity.

After constructing the representation of an invariant or partially invariant solution one
needs to substitute it into the original system of equations. The system of equations in the
functions .i and the superfluous functions thus obtained is called the reduced system. This
system is overdetermined and requires analysis of compatibility. Usually the compatibility
analysis is easier for invariant solutions than for the partially invariant ones.

IfH ′ is a subgroup of H, then it may be possible that a partially invariantH(σ, δ)-solution
is a partially invariant H ′(σ ′, δ′)-solution. In this case δ′ � δ, σ ′ � σ [18]. A solution is
called reducible to a H ′(σ ′, δ′)-solution if there exists H ′ ⊂ H such that δ′ < δ, σ ′ = σ .
In particular, a solution is called reducible to an invariant solution if there exists H ′ ⊂ H

with δ′ = 0. Thus, a natural problem is to reduce a partially invariant H(σ, δ)-solution to an
invariant H ′(σ, 0)-solution.
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3. Viscous gas dynamics equations

The viscous gas dynamics equations govern the three-dimensional motion of a compressible,
thermal conductive, Newtonian viscous gas flow

dv

dt
= τ div(P )

dτ

dt
− τ div(v) = 0

dε

dt
= τP :D + τ div(κ∇T ).

Here τ = 1/ρ is the specific volume, ρ is the density, v is the velocity, P is the stress tensor,
D = 1

2

(
∂v
∂x +

(
∂v
∂x

)∗)
is the rate-of-strain tensor, ε is the internal energy, T is the temperature

and κ is the coefficient of heat conductivity. The Stokes axioms for a viscous gas give

P = (−p + λ div(v))I + 2µD

where p is the pressure, λ and µ are the first and second coefficients of viscosity, respectively.
These coefficients of viscosity are related to the coefficient of bulk viscosity k by the expression

k = λ + 2
3µ.

In general, it is believed that k is negligible except in the study of the structure of shock waves
and in the absorption and attenuation of acoustic waves.

A viscous gas is a two-parametric medium. As the main thermodynamic variables, we
choose pressure p and specific volume τ : entropy η, internal energy ε and temperature T are
functions of pressure and specific volume

η = η(p, τ ) ε = ε(p, τ ) T = T (p, τ ).

The first and second thermodynamic laws require these functions to satisfy the equations

ηp = εp

T
ητ = ετ + p

T
3λ + 2µ � 0 µ � 0 κ � 0.

For simplicity of classification we study the case which corresponds to an essentially viscous
and heat conductive gas

µ �= 0 κ �= 0.

Thus, the viscous gas dynamics equations we study are
dv

dt
+ τ∇p = τ ((λ + µ)∇(div(v)) + (div(v))∇λ + µ�v + 2D(∇µ))

dτ

dt
− τ div(v) = 0 (14)

dp

dt
+ A(p, τ)div(v) = B(p, τ)(λ(div(v))2 + 2µD:D + (∇κ)(∇T ) + κ�T )

with functions

A = τ (ετ + p)

εp
B = τ

εp
.

Note that the internal energy and entropy can be expressed through the functions A =
A(p, τ), B = B(p, τ) by the formulae

εp = τ

B
ετ = A

B
− p ηp = τ

BT
ητ = A

BT
.

The conditions εpτ = ετp, ηpτ = ητp lead to the restrictions

τBτ + BAp − ABp = B2 + B τTτ = ATp − T B. (15)

In the case of an ideal gas (i.e. the gas that obeys the Clapeyron equation T = R−1pτ )
B = B(τp),A = p(1 + B(τp)) with an arbitrary function B(τp). For a polytropic gas
ε = (γ − 1)−1τp and once more this simplifies the functionsA and B: B = (γ − 1), A = γp.
Here R is the gas constant and γ is a polytropic exponent. If τ and µ are constants, then
system (14) is split into two parts: the Navier–Stokes equations and energy equation3.
3 Sometimes in the literature equations (14) are called the full Navier–Stokes equations.
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3.1. Two-dimensional steady viscous gas dynamics equations

In this paper we study the two-dimensional steady viscous gas dynamics equations

uτx + vτy − τ
(
ux + vy + ν

u

x

)
= 0

uux + vuy + τpx = τ

(
(λ + µ)

(
ux + vy + ν

u

x

)
x

+ λx
(
ux + vy + ν

u

x

)

+ 2µxux + µy(uy + vx) + µ
(
uxx + uyy + ν

ux

x

)
− µν

u

x2

)

uvx + vvy + τpy = τ

(
(λ + µ)

(
ux + vy + ν

u

x

)
y

+ λy

(
ux + vy + ν

u

x

)
(16)

+µx(uy + vx) + 2µyvy + µ
(
vxx + vyy + ν

vx

x

))

upx + vpy + A(p, ρ)
(
ux + vy + ν

u

x

)
= B(p, ρ)

(
κ

(
Txx + Tyy + ν

Tx

x

)
+ κxTx + κyTy

+µ

(
2

(
u2
x + v2

y + ν
u2

x2

)
+ (uy + vx)

2

))

where ν = 0 corresponds to the plane flows and ν = 1 to the axisymmetrical flows. The case
of ideal gas T = R−1pτ where the first, λ = λ(T ), and second, µ = µ(T ), coefficients of
viscosity are related by the equation λ = −2µ/3 and κ = κ(T ) has been studied in [12]. Here
we study the gas dynamics equations with arbitrary state equations.

Since the arbitrary elements satisfy restrictions (15) and A = A(p, τ), B = B(p, τ),
λ = λ(p, τ ), µ = µ(p, τ), κ = κ(p, τ ), T = T (p, τ ), hence for calculating the equivalence
group of transformations we have to append the equations

Ax = 0 Ay = 0 Au = 0 Av = 0
Bx = 0 By = 0 Bu = 0 Bv = 0
λx = 0 λy = 0 λu = 0 λv = 0
µx = 0 µy = 0 µu = 0 µv = 0
κx = 0 κy = 0 κu = 0 κv = 0
Tx = 0 Ty = 0 Tu = 0 Tv = 0

(17)

to equations (16). All coefficients of the infinitesimal generator of the equivalence group are
dependent on all independent, dependent variables and arbitrary elements

x, y, u, v, τ, p,A,B, λ,µ, κ, T .

All necessary calculations were carried out on a computer using the symbolic
manipulation program REDUCE [20]. The calculations showed that the group of equivalence
transformations of equations (16), (17) corresponds to the Lie algebra with generators

Xe
1 = ∂y Xe

2 = ∂p Xe
3 = x∂x + y∂y + λ∂λ + µ∂µ + κ∂κ

Xe
4 = x∂x + y∂y + u∂u + v∂v + 2τ∂τ + 2κ∂κ Xe

5 = −τ∂τ + p∂p + A∂A + λ∂λ + µ∂µ + κ∂κ.

In the case ν = 0 there are two more generators

Xe
6 = ∂x Xe

7 = y∂x − x∂y + v∂u − u∂v

which correspond to shift and rotation.
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Remark. If instead of the functions A(p, τ) andB(p, τ), one considers the internal energy
ε(p, τ ), then the operators Xe

2,X
e
4 and Xe

5 are changed to

Xe
2 = ∂p − τ∂ε Xe

4 = x∂x + y∂y + u∂u + v∂v + 2τ∂τ + 2κ∂κ + 2ε∂ε

Xe
5 = −τ∂τ + p∂p + λ∂λ + µ∂µ + κ∂κ

and there is one more generator Xe
8 = ∂ε.

3.2. Admitted group

For finding the admitted group we look for the generator

X = ζ x∂x + ζ y∂y + ζ u∂u + ζ v∂v + ζ τ ∂τ + ζ p∂p

with the coefficients depending on x, y, u, v, τ, p. Calculations lead to the following result.
The kernel of the fundamental Lie algebra is made up of the generator

X1 = ∂y

if ν = 1 and

X1 = ∂y X2 = ∂x X3 = y∂x − x∂y + v∂u − u∂v

if ν = 0. An extension of the kernel of the principal Lie algebra occurs by specializing
the functions A = A(p, τ), B = B(p, τ), λ = λ(p, τ ), µ = µ(p, τ), κ = κ(p, τ ), T =
T (p, τ ). Note that the functions A = A(p, τ), B = B(p, τ), T = T (p, τ ) have to satisfy
equations (15). There are three types of generators admitted by system (16). Further, α, β and
δ are arbitrary constants.

Type (a). If the functions A(τ, p), B(τ, p), λ(τ, p), µ(τ, p), κ(τ, p), T (τ, p) satisfy the
equations

ατAτ + Ap = 0 ατBτ + Bp = 0

ατµτ + µp = βµ ατλτ + λp = βλ

ατTτ + Tp = δT ατκτ + κp = (−δ + α + β)κ

(18)

then there is one more admitted generator:

Ya = α(u∂u + v∂v) + 2ατ∂τ + 2∂p + (α + 2β)(x∂x + y∂y).

The general solution of equations (18) is

A = A(τe−αp) B = B(τe−αp) µ = eβpM(τe−αp)

λ = eβp@(τe−αp) T = eδpA(τe−αp) κ = e(−δ+α+β)pK(τe−αp)
(19)

where the functions A(z), B(z) and A(z) satisfy the equations (z ≡ τe−αp):

−αzBA′ + zB ′(1 + αA) = B2 + B (1 + αA)zA′ = (δA− B)A. (20)

The internal energy is represented by the formula

ε = eαp(ϕ(z)− zp) + ψ(p) ψ ′(p) = Ceαp

where the function ϕ(z) and constant C can be accounted arbitrarily and they are related to
the functions A(z) and B(z) by the formulae

ϕ′(z) = A(z)

B(z)
C = z +

z

B(z)
+ αzϕ′(z)− αϕ(z).
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In this case the function A(z) has to satisfy the equation

(C − z + αϕ(z))A′(z) = (δϕ′(z)− 1)A(z).

Type (b). If the functions A(τ, p), B(τ, p), λ(τ, p), µ(τ, p), κ(τ, p), T (τ, p) satisfy the
equations

ατAτ + pAp = A ατBτ + pBp = 0
ατµτ + pµp = (β + 1)µ ατλτ + pλp = (β + 1)λ
ατTτ + pTp = δT ατκτ + pTp = (−δ + 2 + α + β)κ

(21)

then there is an extension by the generator

Yb = (1 + α)(u∂u + v∂v) + 2ατ∂τ + 2p∂p + (α + 2β + 1)(x∂x + y∂y).

The general solution of equations (21) is

A = pÂ(τp−α) B = B(τp−α) µ = pβ+1M(τp−α)

λ = pβ+1@(τp−α) T = pδA(τp−α) κ = p−δ+α+β+2K(τp−α)
(22)

where the functions Â(z), B(z) and A(z) satisfy the equations (z ≡ τp−α):

−αzBÂ′ + zB ′(1 + αÂ) = B2 + B − BÂ (1 + αÂ)zA′ = (δÂ− B)A. (23)

The internal energy is represented by the formula

ε = p(α+1)(ϕ(z)− z) + ψ(p) ψ ′(p) = Cpα

where the function ϕ(z) and constant C are arbitrary and they are related to the functions Â(z)
and B(z) by the formulae

ϕ′(z) = Â(z)

B(z)
C = z +

z

B(z)
+ αzϕ′(z)− (α + 1)ϕ(z).

The function A(z) is represented through the function ϕ(z) by the formula

(C − z + (α + 1)ϕ(z))A′(z) = (δϕ′(z)− 1)A(z).

Note that an ideal gas belongs to this type if δ = α + 1 and the function ϕ(z) satisfies the
equation

δ(zϕ′ − ϕ) = C.

Type (c). If the functions A(τ, p), B(τ, p), λ(τ, p), µ(τ, p), κ(τ, p), T (τ, p) satisfy the
equations

Aτ = 0 Bτ = 0 τµτ = βµ τλτ = βλ
(24)

τTτ = δT τκτ = (−δ + 1 + β)κ

then there is one more admitted generator:

Yc = u∂u + v∂v + 2τ∂τ + (1 + 2β)(x∂x + y∂y).

The general solution of equations (24) is

A = A(p) B = B(p) µ = τβM(p) λ = τβ@(p)

T = τ δA(p) κ = τ−δ+β+1K(p) (25)

where the functions A(p), B(p) and A(p) satisfy the equations

BA′ − AB ′ = B2 + B AA′ = (δ + B)A. (26)

The internal energy is represented by the formula

ε = τϕ(p)− τp
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λ µ T κ A B z Condition

a eβp@(z) eβpM(z) eδpA(z) e(−δ+α+β)pK(z) A(z) B(z) τe−αp (20)
b pβ+1@(z) pβ+1M(z) pδA(z) p−δ+α+β+2K(z) pÂ(z) B(z) τp−α (23)
c τβ@(p) τβM(p) τ δA(p) τ−δ+β+1K(p) A(p) B(p) p (26)

where ϕ(p) is an arbitrary function and is related to the functions A(p) and B(p) by the
formula

ϕ(p) = A(p)

B(p)
.

In this case the function A(p) is related to the function ϕ(z) by the formula

ϕ(p)A′(p) = (1 − δ + δϕ′(p))A(p).

Note that if δ = 1 and ϕ = Cp, then the gas is ideal.
The final results of the group classification are presented in table 1.

In this table the first column means the type of extension of the algebra {X} or {X,Y }: the
type a, b, or c, respectively. The last column means conditions for the state functions.

Thus, there are three kinds of extensions of the groups admitted by equations (16), which
depend on the specifications of the functions A = A(p, τ), B = B(p, τ), λ = λ(p, τ ), µ =
µ(p, τ), κ = κ(p, τ ), T = T (p, τ ). These extensions can be one dimensional and two
dimensional4.

The one-dimensional extensions are with the generators {Ya}, {Yb} or {Yc}.
The two-dimensional extensions are with the generators {Ya, Yb}, {Ya, Yc} or {Yb, Yc}.
The group with the extension {Ya, Yb} is admitted by equations (16) if

A = A0τ
α B = −1 µ = µ0τ

β+α λ = λ0τ
β+α

κ = κ0τ
β+2α T = T0τ α �= 0.

In this case the internal energy is ε = −(τp +A0
∫
τα dτ

)
. Instead of the operators Ya and Yb,

one can use their linear combinations:

Ŷ a = ∂p Ŷ b = (1 + α)(u∂u + v∂v) + 2τ∂τ + (α + 2β + 1)(x∂x + y∂y).

The group with the extension of type {Ya, Yc} is admitted by equations (16) if

A = A0 B = −1 µ = µ0τ
βeαp λ = λ0τ

βeαp

κ = κ0τ
β−A0σe(α−σ )p T = T0τ

1+A0σeσp.

In this case the internal energy is ε = −(τp + A0τ ) and by taking linear combinations of the
operators Ya and Yc, one obtains another basis of the generators:

Ŷ a = ∂p + α(x∂x + y∂y) Ŷ c = u∂u + v∂v + 2τ∂τ + (2β + 1)(x∂x + y∂y).

There is a third type of extensions {Yb, Yc} if

A = γp B = γ − 1 µ = µ0τ
βp1+α λ = λ0τ

βp1+α

κ = κ0τ
γ (1−α)+βpα−δ+2 T = T0τ

γ (δ−1)+1pδ γ �= 1.

The internal energy in this case is

ε = τp

γ − 1
4 There is no three-dimensional extension because of incompatibility of the system of differential equations for the
functions A = A(p, τ ),B = B(p, τ ), λ = λ(p, τ ), µ = µ(p, τ ), κ = κ(p, τ ), T = T (p, τ ).
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and linear combinations of the operators Yb and Yc are

Ŷ b = u∂u + v∂v + 2p∂p + (2α + 1)(x∂x + y∂y) Ŷ c = τ∂τ − p∂p + (β − α)(x∂x + y∂y).

Note that a polytropic gas belongs to the last case of gases, where γ is a polytropic exponent.
In the formulae above A0, µ0, λ0, κ0, T0, α, β, γ, δ, σ are arbitrary constants; the

commutators are

[Ŷ a, Ŷ b] = 0 [Ŷ a, Ŷ c] = 0 [Ŷ b, Ŷ c] = 0.

Remark. By direct checking one can set for the general unsteady three-dimensional gas flow
the same models of types (a), (b) and (c), described by equations (19), (20), (22 ), (23), (25)
and (26), with the following generalized generators:

Ya = αv∂v + 2ατ∂τ + 2∂p + (α + 2β)x∂x + 2βt∂t

Yb = (1 + α)v∂v + 2ατ∂τ + 2p∂p + (α + 2β + 1)x∂x + 2βt∂t

Yc = v∂v + 2τ∂τ + (1 + 2β)x∂x + 2βt∂t .

The kernel includes the Galilean group with generators

X i = ∂xi X3+i = t∂xi + ∂vi Y ij = xi∂xj − xj∂xi + vi∂vj − vj ∂vi

X10 = ∂t (i, j = 1, 2, 3 i < j).

It has to be mentioned that the group classification of the viscous gas dynamics equations in the
case of an ideal gas with the first, λ = λ(T ), and second, µ = µ(T ), coefficients of viscosity
related by the equation λ = −2µ/3, and κ = κ(T )was done in [11]. Two-dimensional steady
viscous gas dynamics equations and their simplifications (parabolized models) for ideal gas
were studied in [12]. The group classification of spherically symmetric flows with arbitrary
state equations was considered in [14].

4. Optimal system of subalgebras

In this section two groups are studied. One is the group with generators

L4 = {X1,X2,X3, Y }.
The other is the group with generators

L2 = {X2, Y }.
Here Y is one of the generators: Y = Ya (with the parameter z, which is used later z = α+2β),
Y = Yb (z = α+2β+1) or Y = Yc (z = 2β+1). These groups correspond to the plane (ν = 0)
case and axisymmetrical (ν = 1) case with one extension, respectively. The classifications of
subalgebras of the algebras L4 and L2 are given in this section.

The classification subdivides a set of H-solutions into equivalent (similar) classes.
Any two H-solutions f1 and f2 are elements of the same equivalence class if there exists
a transformation Ta ∈ GS such that f2 = Taf1. Otherwise f1, f2 belong to different classes
and they are called essentially different H-solutions. The classification of H-solutions is related
to the optimal system of subalgebrasA of the admitted algebra L. To obtain the optimal system
of subalgebras A, we use the algorithm developed in [21, 22]. Let us consider the algebra



3526 S V Meleshko

L4 = {X1,X2,X3, Y }. The table of commutators is

X1 X2 X3 Y

X1 0 0 X2 zX1

X2 0 0 −X1 zX2

X3 −X2 X1 0 0
Y −zX1 −zX2 0 0

Automorphisms are recovered by the table of commutators and consist of the
automorphisms

A1: x ′
1 = x1 + zy1a1 x ′

2 = x2 − x3a1

A2: x ′
1 = x1 + x3a2 x ′

2 = x2 + zy1a2

A3: x ′
1 = x1 cos a3 − x2 sin a3 x ′

2 = x1 sin a3 + x2 cos a3

A4: x ′
1 = x1eza4 x ′

2 = x2eza4 .

Here xi (i = 1, 2, 3) and y1 are coordinates of the operator Z = x1X1 + x2X2 + x3X3 + y1Y

before the transformation and x ′
i (i = 1, 2, 3) and y ′

1 are coordinates of the operator Z′ after
action of the automorphism, ai are parameters of the automorphisms. In the expressions for
automorphisms only transformed coordinates are presented. There is also one involution

E: x ′
1 = −x1 x ′

2 = −x2

which corresponds to the change of variables x → −x, y → −y, u → −u and v → −v
without change of equations (16).

The Lie algebraL4 has the following decomposition: L4 = N2 ⊕J2, whereN2 = {X3, Y }
is a subalgebra and J2 = {X1,X2} is an ideal. The Lie algebra N2 is Abelian. Hence, its
classification is trivial and consists of the subalgebras

{X3 + hY }, {Y }, {X3, Y }.
The optimal system of subalgebras of the algebra L4 is obtained by gluing the ideal J2 to the
constructed subalgebras of the optimal system of subalgebras of the algebra N2.

Because the number of independentvariables is two, invariant solutions can be constructed
only with respect to one- and two-dimensional subalgebras. These subalgebras of the optimal
system are

{X3, Y }, {X1, Y + hX2}, {X1,X2}, {X3 + qY }, {Y + hX2}, {X1}
where zh = 0, and q and h are arbitrary constants.

The optimal system of subalgebras of the algebraL2 = {X2, Y } consists of the subalgebras

{X2, Y }, {Y + hX2}, {X2}
where zh = 0 and h is an arbitrary constant.

4.1. Representations of invariant solutions

The next step in the construction of invariant solutions consists of finding universal invariants.
Note that the subalgebras from the optimal system of the algebra L2 are those from the
optimal system of the algebra L4. Thus, it is enough to consider representations of invariant
solutions of the algebra L4. Before presenting the results, we give some remarks. In the case
of two-dimensional subalgebras, the representations of invariant solutions are obtained by
assuming that all invariants are constants. The subalgebra {X1,X2} has no invariant solutions.
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The invariant solution with respect to the subalgebra {X1} is a trivial one-dimensional steady
solution of the viscous gas dynamics equations.

According to the theory of group analysis [18], after constructing the representations of
invariant solutions one needs to substitute the representations of solutions into the original
system of equations.

4.1.1. Subalgebra {X3, Y }. For the operator X3 it is convenient to use the cylindrical
coordinates

x = r cos θ y = r sin θ u = U cos θ − V sin θ v = U cos θ + V cos θ.

In these coordinates there are the following relations:

X3 = ∂θ x∂x + y∂y = r∂r u∂u + v∂v = U∂U + V ∂V .

Note that if z = 0, then there are no invariant solutions. Hence, we have only to study
the case z �= 0.

In case (a) z = α + 2β �= 0 and the universal invariant consists of the invariants

Ur−α/z, V r−α/z, τ r−2α/z, p − 2z−1 ln r.

In case (b) z = α + 2β + 1 �= 0 and the universal invariant consists of the invariants

Ur−(1+α)/z, V r−(1+α)/z, τ r−2α/z, pr−2/z.

In case (c) z = 2β + 1 �= 0 and the universal invariant consists of the invariants

Ur−1/z, V r−1/z, τ r−2/z, p.

4.1.2. Subalgebra {X1, Y + hX2} (zh = 0). If z = 0 and h = 0, then there are no invariant
solutions.

In case (a) z = α + 2β. If z �= 0, then h = 0 and the universal invariant consists of the
invariants

uy−α/z, vy−α/z, τy−2α/z, p − 2z−1 ln y.

If z = α + 2β = 0, then there is an invariant solution only if h �= 0 and the universal
invariant is

ue−αy/h, ve−αy/h, τe−2αy/h, p − 2h−1y.

In case (b) z = α + 2β + 1. If z �= 0, then h = 0 and the universal invariant consists of
the invariants

uy−(1+α)/z, vy−(1+α)/z, τy−2α/z, py−2/z.

If z = α + 2β = 0, then there is an invariant solution only if h �= 0 and the universal
invariant is

ue−(1+α)y/h, ve−(1+α)y/h, τe−2αy/h, pe−2y/h.

In case (c) z = 2β + 1. If z �= 0, then h = 0 and the universal invariant consists of the
invariants

uy−1/z, vy−1/z, τy−2/z, p.

If z = α + 2β = 0, then there is an invariant solution only if h �= 0 and the universal
invariant is

ue−y/h, ve−y/h, τe−2y/h, p.
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4.1.3. Subalgebra {X3 + qY }. The operators X3 + qY in cylindrical coordinates are

X3 + qYa = ∂θ + q((α + 2β)r∂r + α(U∂U + V ∂V ) + 2ατ∂τ + 2∂p)

X3 + qYb = ∂θ + q((α + 2β + 1)r∂r + (1 + α)(U∂U + V ∂V ) + 2ατ∂τ + 2p∂p)

X3 + qYc = ∂θ + q((2β + 1)r∂r + U∂U + V ∂V + 2τ∂τ ).

In case (a) the universal invariant consists of the invariants

J̄ = (Ue−αqθ , V e−αqθ , τe−2αqθ , p − 2qθ) ¯̄J = re−(α+2β)qθ .

In case (b) the universal invariant consists of the invariants

J̄ = (
Ue−(1+α)qθ , V e−(1+α)qθ , τe−2αqθ , pe−2qθ

) ¯̄J = re−(α+2β+1)qθ .

In case (c) the universal invariant consists of the invariants

J̄ = (Ue−qθ , V e−qθ , τe−2qθ , p) ¯̄J = re−(2β+1)qθ .

4.1.4. Subalgebra {Y + hX2} (zh = 0). Note that if z = 0 and h = 0, then there are no
invariant solutions.

In case (a) z = α + 2β. If z �= 0, then h = 0 and the universal invariant consists of the
invariants

J̄ = (
uy−α/z, vy−α/z, τy−2α/z, p − 2z−1 ln y

) ¯̄J = x/y.

If z = α + 2β = 0, then there is an invariant solution only if h �= 0 and the universal
invariant is

J̄ = (
ue−αy/h, ve−αy/h, τe−2αy/h, p − 2h−1y

) ¯̄J = x.

In case (b) z = α + 2β + 1. If z �= 0 , then h = 0 and the universal invariant consists of
the invariants

J̄ = (
uy−(1+α)/z, vy−(1+α)/z, τy−2α/z, py−2/z) ¯̄J = x/y.

If z = 2β + 1 = 0, then there is an invariant solution only if h �= 0 and the universal
invariant is

J̄ = (
ue−(1+α)y/h, ve−(1+α)y/h, τe−2αy/h, pe−2y/h) ¯̄J = x.

In case (c) z = 2β + 1. If z �= 0 , then h = 0 and the universal invariant consists of the
invariants

J̄ = (
uy−1/z, vy−1/z, τy−2/z, p

) ¯̄J = x/y.

If z = α + 2β = 0, then there is an invariant solution only if h �= 0 and the universal
invariant is

J̄ = (
ue−y/h, ve−y/h, τe−2y/h, p

) ¯̄J = x.

5. Invariant solutions

In this section we demonstrate the construction of reduced systems for invariant solutions. As
an example the subalgebra {Y +hX2} for an ideal gas (T = R−1pτ) of type (c) is taken. Note
that in the case of an ideal gas B = γ − 1, A = γp, where γ is a constant. The obtained
reduced systems are systems of ordinary differential equations. For solving the ordinary
differential equations, one can use well-developed numerical methods.
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5.1. The case 2β + 1 �= 0

At first, let us consider z = 2β + 1 �= 0. In this case the representation of the invariant
solution is

u = U(ξ)yq v = V (ξ)yq τ = G(ξ)y2q p = P(ξ) ξ = x

y

where q = z−1. The next step in obtaining the reduced system is the substitution of
the representation of the invariant solution into the initial system of viscous gas dynamics
equations. For example, the equation of mass conservation becomes

dG

dξ
(U − ξV )− G

dU

dξ
(U − ξV ) + (q − 1)GV = 0.

If q = 1 (or β = 0), then the last equation can be integrated:

U = ξV + c1G

where c1 is an arbitrary constant. For the sake of simplicity, we present the reduced system for
this case (β = 0) and also assume that the functions @(p),M(p),K(p) are constants. The
remaining equations in this case are

dG

dξ
c2

1 + c1

(
2V − (ξ2 + 1)Re−1(λ̃ + 2)

d2G

dξ2

)
+ (ξ2 + 1)

(
dP

dξ
− 2(λ̃ + 2)Re−1 dV

dξ

)
= 0

c1

(
Re−1 d2G

dξ2
ξ(λ̃ + 1) +

dV

dξ

)
+ 2 Re−1 dV

dξ
ξ(λ̃ + 1)− dP

dξ
ξ

− Re−1 d2V

dξ2
(ξ2 + 1) + G−1V 2 = 0

2(γ − 1)−1 RePV + c2
1

(
2

dG

dξ
Gξ −

(
dG

dξ

)2

(λ̃ + 2 + ξ2) −G2

)
(27)

+ c1

(
dG

dξ
(ReP − 4V (λ̃ + 1)) + 2

dV

dξ
G(ξ2 − 1)− 2

dG

dξ

dV

dξ
ξ(ξ2 + 1)

)

+ c1(γ − 1)−1 Re

(
dG

dξ
P +

dP

dξ
G

)
+ 2V (ReP − 2V (λ̃ + 1))

−
(

dV

dξ

)2

(ξ2 + 1)2 +
γ Pr −1

(γ − 1)

(
2

(
dG

dξ
Pξ +

dP

dξ
Gξ −GP

)

− (ξ2 + 1)

(
2

dG

dξ

dP

dξ
+

d2G

dξ2
P +

d2P

dξ2
G

))
= 0.

Here Re is the Reynolds number and Pr is the Prandtl number. The nondimensional dependent
variables G̃, Ṽ , P̃ , c̃1 are related to the dimensional variables G,V,P, c1 by the formulae

G = L−2τ0G̃ V = Lv0Ṽ P = p0P̃ λ = µλ̃ c1 = v0Lτ
−1
0 c̃1

p0 = v2
0τ

−1
0 Pr = γR

κ(γ − 1)
µ Re = Lv0µ

−1τ−1
0

where L is the reference length, v0 is the reference velocity and τ0 is the reference specific
volume. In system (27) the wave ‘∼’ is dropped. The system of equations (27) is invariant
with respect to the transformation

ξ ′ = −ξ c′
1 = −c1.

Therefore, it is enough to study this system for c1 � 0. If c1 �= 0 , then the system can be
solved with respect to the second derivatives of the functionsG,V and P. If c1 = 0, then from
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Figure 1. The functions V (ξ) for c1 = 0 and c1 = 0.5.
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Figure 2. The functions τ (ξ) for c1 = 0 and c1 = 0.5.

the first equation one can find the first derivative of the function P and the remaining equations
can be solved with respect to the second derivatives of the functions V and G. In this case if
V ′(0) = G′(0) = P ′(0) = 0, then the functions V (ξ),G(ξ), P (ξ) are symmetric. Note also
that if c1 = 0, then there is the particular solution

V = 0 P = C2 G = C3ξ + C4(ξ
2 − 1).

In the figures two solutions with c1 = 0 and c1 = 0.5 are given. The functions for V (ξ) are
shown in figure 1. Note that for c1 = 0 the function V (ξ) = 0. The functions for τ (ξ)
are shown in figure 2. The function τ (ξ) for c1 = 0 is symmetric. The functions for P(ξ)
are shown in figure 3. The initial values for these solutions are

V (0) = 0 V ′(0) = 0 G(0) = 1.0

G′(0) = 0 P(0) = 1.0 P ′(0) = 0

and Pr = 0.72,Re = 10.0, γ = 1.4. Note that increasing Re narrows the domain of validity
of the solution.
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Figure 3. The functions P (ξ) for c1 = 0 and c1 = 0.5.

5.2. The case 2β + 1 = 0

If 2β + 1 = 0, then the representation of the invariant solution is

u = U(x)eqy v = V (x)eqy τ = G(x)e2qy p = P(x)

where q = h−1. Substituting the representation of the invariant solution into the initial system
of viscous gas dynamics equations gives the equations

G−1 dG

dx

(
2

dU

dx
M + @W

)
− 2

dP

dx

(
2M ′ dU

dx
+ @′W

)
+ 2

dP

dx

√
G

− 4
d2U

dx2
M − 2

dW

dx
@ + 2G−1/2UW = 0

MG−1 dG

dx

(
dV

dx
+ qU

)
+ 2G−1/2

(
dV

dx
U + qV 2

)

− 2
dP

dx
M ′
(

dV

dx
+ qU

)
− 2M

(
q

dU

dx
+

d2V

dx2

)
= 0

dG

dx
U − G

dU

dx
+ qGV = 0

B−1
√
G

(
PW +

dP

dx
U

)
−
(

dU

dx

)2

(@ + 2M) +
dU

dx
(
√
GP − 2@qV )−

(
dV

dx

)2

M

− 2
dV

dx
MqU + KR−1

(
1

2

(
dG

dx

)2

PG−1 − 3

2

dG

dx

dP

dx
− d2G

dx2
P

− d2P

dx2
G− 2Pq2G

)
− dP

dx
R−1K ′

(
dG

dx
P − dP

dx
G

)
+ q(

√
GPV − qV 2(@ + 2M)−MqU 2) = 0

where W = dU
dx + qV . Note that from the equation of mass conservation, one can find the

derivative dU
dx . The remaining equations are second-order ordinary differential equations with

respect to G,V,P .
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6. Conclusion

Thermodynamic state equations supplement the basic equations of fluid dynamics and
thermodynamics by characterizing the specific fluid of interest. Many special real gas
equations exist for specific fluids. The most commonly used thermal equation of state is
the thermally perfect gas equation5, where p = RρT . The thermally and calorically perfect
gas (ε = cvT ) is a polytropic gas.

The general form of the thermal equation of state for real gases is [23]

pτ = RTf (τ, T )

where f (τ, T ) is the gas compressibility factor. The equations of state (f (τ, T ), ε(τ, T )),
coefficients of viscosity and heat conductivity can be obtained from experimental data, derived
from the kinetic theory or from an appropriate real gas equation of state. The latter approach
is usually used in fluid dynamics. In our study the equations of state are obtained from the
requirement of additional symmetry properties. Additional symmetries allow the construction
of more exact solutions.

The results obtained in this paper show that the classification of the function A(p, τ) is
similar to the inviscid gas dynamics equations ([22], table 1). There is only one difference:
the model 7 ([22], table 1) with the projective generator is absent in our study. The latter is
because of (i) the presence of viscosity and (ii) steadiness of studied flows. Classifications
of the first λ(p, τ ) and second µ(p, τ) coefficients of viscosity and the coefficient of heat
conductivity κ(p, τ ) are related to the classification of the function A(p, τ). If one uses an
additional symmetry for constructing an invariant or a partially invariant solution, then these
coefficients must have special representations.
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